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Properties of irrotational vector fields
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Abstract. In the first part we present properties of irrotational vector fields and in
the second part properties of arbitrary vector fields, all arising from the study of
the energy associated to the vector field. The results relate to critical points and
extrema of the energy, the Riemannian structure on the manifold, the behaivour of
the energy along orbits of the field and the type of these orbits.

INTRODUCTION

Classical models which were used as starting point for our theory on irrota-
tional vector fields meet in Gravitation theory, Electromagnetism (electrostatic
fields and stationary magnetic fields), Hydrodynamics (the steady irrotational
motion of inviscid fluids), Heat propagation theory in homogeneous, isotropic
medija, Steady magnetohydrodynamic flows (velocity fields, electrostatic fields)
etc. Therefore our results give insight to some still oustanding questions in the
above fields (for example the theory and design of magnetic gaps).

One of our theorems shows that if the speed of variation of the energy attached
to a vector field does not vanish in any point, then the orbits of the field cannot
be closed. Consequently, the flows generated by the vector fields which satisfy
the hypothesis in this theorem do not present Hopf bifurcation.

1. Let (M, g) be a finite dimensional Riemannian manifold and Z (M) the Lie
algebra of C~ vector fields on M. Fix X eZ(M) and suppose that for all Y,
Z €% (M) we have
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(D g(VyX,2)—g(V, X, V) =0

i.e. X is an irrotational vector field on (M, g).

The relation (1) is equivalent to the fact that (VX)X is a symmetric endomor-
phism with respect to the scalar product induced by g in TxM for each point
x €M. Hence the concurrent vector fields are irrotational.

A vector field is irrotational if and only if it is a locally potential field. An
irrotational vector field X for which div X = 0 is called harmonic.

1
Let f= ;g(X,X) be the energy of X. As

df(Y) =g(VyX,X)=g(Vy X, V), VY EZ(M)
it follows
grad f=V, X.

So it becomes obvious that zeros of X are critical points of f and that the critical
set of f includes the orbits of X which are geodesics. The existence of an orbit
a of X which is a geodesic imposes rank (V X)_ <n — 1.

The relation d f(X) =g(VXX, X) shows that if the quadratic form Y;—>g(VYxX,
Y), Y € T_M is positive definite for each x € M, then critical points of f are zeros
of X.

The definition of the Hessian of a real function and the definition of fimply.

Hess f(Y,Y) =g(Vy(VX)(Y), X) + g(Vy X, Vy X), VY EZ(M). We will write
down this Hessian in a form suitable to our arguments. Applying V, to (1) and
taking into account Vg = 0, we deduce

g(V, Vy X, 2) +g(Vy X, V, Z) —g(V, V, X, ¥) —
—g(V,X,V, Y)=0.

Since
V,Vy X =V, (V, X) = V,,(VXNY) + VX(V, ¥) =
=V, (VIO(V) + Y, o X,
g(Vy X,V 2) = g(Vy ;X V)
we find
©) £V, (VXUY), Z) —g(V,(VX)(2), ¥) = O, VV.Y, ZE T(M).

The Ricci identity
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V, (VX)(Z) =V, (VX)(V) = R(V, Z)(X)
may be written as
(3) g(V,(VXX2),Y)-g(V,(VX)(V), ) =g(R(V, Z)(X), Y).
In the left side of (3) we add and substract g(V,, (VX)(Y), Z),
g(V, VX)(Y), Z2) - g (V,(VX)(Y), Z2) - g(V(VXXZ), Y) -
-g(V,(VX)(), V) =g(R(V, ZXX), Y).
Using (2) we obtain
g(V, VX)), 2) =g(V,(VX)(V), )+ R(Y, X, V,2), VYV, Y, ZEX(M).

All of these give

Hess (Y, ¥) =g(V,(VXXY), Y) + R(X, Y. X, ) +2(V, X,V X),
YY e¥(M).

1. THEOREM. Let X be an irrotational vector field on a Riemannian manifold
(M, g) of dimension n and let f be the energy of X.
(1) If xp€M is a critical point of the energy f and rank (VX)xo =n, then
isa zero of X.
(2) Suppose rank (VX)<n — 2.
a) If x,€M is a local minimum point of the energy f and the sectional
curvature Kx0 of M at X, is strictly negative, then xis a zero of X.
b) If xy€EM is a local maximum point of the energy f and the sectional
curvature KxO of M at X0 is strictly positive, then X vanishes identically
in a neighborhood of x; [

)

Proof. (1) From the expression of the gradient follows VXx X = 0 and hence
X, =0. ’

(2) Denote by X, a critical point of f, i.e. V X = 0, which is not a zero of
X, ie. X ;e 0. As rank (VX)<n-—2, there exxste a vector field Y non-collinear
with X such that VyX =0, ie. g(VX,Y)=0. Fix Y by conditions Y &
€ Ker (VX and oL Xep Yo, # 0. The relation Vy X = 0 implies V,, (VX)(Y) +
+ VX(Vy Y) and hence gVy(VX)(M), Y)=—g(VX(V V), Y) =

—g(VVXYX, Y) = 0.

a) Using the fact that Xy is a local minimum point we find 0<Hessf();,

xo) K, f(xo)g(Y , Yo). It follows f(xo) < 0 and hence f(xo) = 0, contradict-
ing X xo O It remains XXO =0.

b) As X, is a local maximum point we get 0> Hess f(YxO, Y;o) = KxOf(xO) X
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xg()’;o, )’;0). Consequently f(xy) <0 and hence f(xy) = 0. Since f(xg)=0isa
local maximum, there exists necessarily a neighbourhood of x, on which f and
hence X vanish identically. =

2.COROLLARY. Ler (M,g) be a compact n-dimensional Riemannian manifold
with sectional curvature strictly negative. If X is an irrotational vector field
on (M, g) for which rank (VX) <n — 2, then X possesses a zero. =

3. THEOREM. Let X be an irrotational vector field on a complete Riemannian
manifold (M, g). The energy fis convex if and only if

gV, (VXXY), V) + R(X, Y, X, ) + g(V, X, V, X) > 0, VY €X(M).

Let f be the energy of an irrotational vector field on (M, g). The trace of the
Hess f'is the Laplacian A f. Therefore we obtain

(Bf), =) 8Ty X, Vy X) + S, X0, + X,(div X0,
i=1

where Yl, ..., ¥ is an orthonormal basis for T M and S is the Ricci tensor
field. We observe that Q(Y, Y)x=S(Y, N + Y (div X), Y € T M, defines

an affine quadratic form Q_ : .M — R and note

[L={Y,eT,M|Q(Y,Y) =0}, Q ={Y,eT,M|Q(Y,Y), >0}

4 _THEOREM. Let X be an irrotational vector field on the Riemannian manifold
(M.g). If M is compact and X, €T UQ , VxEM, then X is a parallel vector
field and implicitly X, €L, YxeM. =

Proof. Without loss of generality we may assume that M is orientable (if M is
not orientable, we have only to consider an orientable double covering of M).
Af>0 and the Green Theorem, [, Afdv=0, imply Af=0. It follows

g(Vy X,Vy, X)=0, i=1,...,n (¢VX=0), Q(X, X), =0. But the relation
t 1

o(X, X), = S\X, X)x+ X, (div X)=0 is a consequence of VX =0, because
in this case div. X = 0 and S(X, X) = 0. L]

Remark. If Xis an irrotational vector field on (M, g), then cX, ¢ € R is also irrota-
tional. The expression of Qx shows that X €T U Qx, Vx €M, implies cX, €
EFXUQx,VXEM. n
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5.COROLLARY. If (M,g) is a compact Riemannian manifold and the Ricci
tensor Sx is positive (negative) definite for each x €M, then there do not exist
nonzero irrotational vector fields on (M,g) with property X €l LU,
VYxeM. "

Remark. In the hypothesis div X = 0 (particular case of «div X is locally cons-
tant»), we find the results of Bochner [1] and Yano-Bochner [6]. =

6. THEOREM. Let X be an irrotational vector field on the Riemannian manifold
(M, g). If each nonzero value X of X is in § and the energy f attains a local
maximum at a point xOEM, then X vanishes identically in a neighborhood of

»
XO.

Proof. Suppose x, is a local maximum point (necessarily a critical point) of f
and Xx0 # 0. The relation Hess f( );0, Y;to) <0, \7’Yx0 S T;OM implies (Af)x0 <0.
On the other hand Af> 0 in any point in which X is nonzero. It remains Xxo =0.
As f(xy) = 0 is a maximum, f and hence X must necessarily vanish identically on
a neighborhood of x,,. L]

1
2. Let X be an arbitrary vector field on a Riemannian manifold, f=5 g(X, X)

be the energy of X and a :/ > M be an orbit of X. The speed of variation of the
energy f along orbits of X is given by the derivative V, f= df(X) =g(V, X, X).
If VXX = 0, then « is a geodesic. On the other hand, we observe that g(V, X,

Xea=(|VyX|oa)(| X]|°a) if and only if along & we have V, X = %X, ie.

a is a geodesic reparametrized by s = h(¢), t € 1, where

t r
1
h(t)=a + bf exp (-2— f I ooz(u)du)dr, a,b = const.

o o

7.LEMMA. Let X be a vector field on (M,g) and f be the energy of X. If «:
I > Mis an orbit of X, then
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foalty) if ot is a geodesic
poa(u)ydu
foa(tye if o is a geodesic
foa(t) =1 reparametrized by
s = h(r)
t
fo aft,) +[ g(Vy X, X)oo(u) du if otherwise L

4]

d
Proof. The result is a consequence of a; foa= foo o. Really,ifVXX = 0, then

d
T foa=0;if a is a geodesic reparametrized by s = 2(¢), t €1, ie. VyX = % X

equivalent to g(Vy X, X) = |V, X || X ||, then ;—t foa=(uoa)foa). .

8. THEOREM. Let X be a vector field on (M, g). If g(Ny X, X) does not vanish
in any point, then the orbits of X cannot be closed (and hence nor periodic). L]

Proof. Let a:1—+ M be an orbit of X. Suppose there exist 1, 5€1 1, <t,s0
that (x(tl) = oz(tz). If follows foa(tl) =foa(t2). Taking Lemma 7 into account
we find

ty 1]
j pmoa(u)du =0 or / g(VXX, X)ea(u)du = 0.

4 5]

The mean value theorem on [tl, t2] implies g(VXX, X)o a(uo) = 0, which contra-
dicts the hypothesis. L]

9.THEOREM. Let X be a vector field on (M,g) and o : I - M an orbit of X. If
o is a geodesic reparametrized by s = h(t), t Eland poa : I - R is nondecreasing,
then foo :1— R is either convex or concave. If o is neither a geodesic, nor a
geodesic reparametrized by s = h(t), t €l and g(Vy X, X) oo : I > R is nondecrea-
sing, then foa : I - R is convex. L]

Proof. We prove the second part. Lemma 7 and the hypotheses imply
d? d

e foa(t) = = gV X, X)oa(t) >0, Viel L]
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10. THEOREM. Let dim M = 2 and let X be a vector field on (M, g) which admits
an orbit o : R > M with a(R) dense in M.
(1) If ais a geodesic reparametrized by s = h(t), t €1, then the integrals

o0 o
[ pnoa(u)du, f pec(u)ydu

1o o0

are convergent and X has no zeroson M.
(2) If o is neither a geodesic, nor a geodesic reparametrized by s = h(t), t €1,
then the integrals

oo to
f g(Vy X, X) o a(u)du, f g(Vy X, X) o a(u)du
to — oo

are convergent. ]

Proof. The same arguments as in [4, Theorem 12].
(2) According to Lemma 7, the energy of X along the orbit ais

t
foa(t)=foal(t)) +I g(Vy X, X)oa(uw)du.

to
Let x € M — a(R). We may choose a sequence {Uk }of neighborhoods of x such
that U, _; C U,, which forms a basis at x. Any neighborhood of x includes some
neighborhood U,. Since each U, contains a point of a(R), we may choose a
sequence {5, } of real numbers such that a(s;) € U,. The sequence {s, } cannot be
bounded. If {5, } C R where bounded, there would be a subsequence {s; } with
limit s and x = kli_}rrL a(s,") = afs), i.e. x € a(R), which contradicts the assumption

x € M — a(R). The sequence {a(s; )} has limit x. Therefore

f(x) = lim fc>0t(sk)= lim foa(sk) or lim foa(sk),
k — oo S S —o

Sk
f(x)=foua(ty) + lim g(Vy X, X) e a(u)du or
5y

fo

Sk

foa(t)) + lim f g(Vy X, X) o a(u)du. .

Sy —o
143}
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11. THEOREM. Let (M,g) be a compact Riemannian manifold, X be a vector
field on (M, g), let f be the energy of X and « an arbitrary maximal orbit of X.
(1) Suppose a is a geodesic reparametrized be s = h(t), t €I. The integrals

S to
/ poa(u)du, / Hooa(u)du

to oo

are convergent and u has a zero.
If the energy f does not vanish on M and zeros of p are isolated, then a(R)
joins two zeros of u.

t—> oo - —o0

t t
limf uooa(uydu =—o or lim /uoa(u)du:«;
t

1o o

if and only if the point x = lim a(t) respectively y = lim «(?) is a zero of f.
t—> o0 t— —oe

(2) Suppose a is neither a geodesic, nor a geodesic reparametrized by s = h(t),
t el Theintegrals

oo

fo
f g(Vy X, X) o c(u)du, / g(Vy X, X) cax(u)du

fo — o

are convergent and g(VXX, X) has a zero. If zeros of g(VXX, X) are isolated,
then a(R) joins two zeros of g(Vy X, X). n

Proof. The same arguments as in [4, Theorem 13].

(2) Since M compact, the domain of « is R and the sequence {a(k)} possesses
a convergent subsequence { a(t, )} whose limit will be denoted by x. Taking
Lemma 7 into account we find

T
f(x)=k1im fooz(tk)=fooz(t0)+klim/ g(/VXX,X)oa(u)du.

fo

If follows that the integral ft:' g(VX X, X) oa(u)du is convergent. The convergence
of the integral and kl&ng° g(Vy X, X) e a(t,) = g(Vy X, X)(x) imply g(Vy X, X)(x) =
=0.

The case of sequence {&(— k)} is analogous.

Under the hypothesis that zeros of g(Vy X, X) are isolated one proves that
there exist zeros x and y such that x = ,Iin}., a(t),y = tlir_nm a(t).
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It suffices to show that there exists an isolated zero of g(VXX , X) such that
lim a(¢) = x. If not so, there will be an € > 0 such that for each &, d(a(sk), X) =
t—> oo

> € for some s, > 1. Since d(a(z,), x) <e for k succifiently large, this says that
a(t) enters and leaves the ball {z €M|d(z, x) <e} repeatedly as t—>oco. The
distance d (a(t), x) must equal € for some ¢ between t, and s choose s, so that
in fact d(a(s,), x) =e€. Since {zE€M|d(z, x) =€} is compact, the sequence
{ae(s,)} has a subsequence converging to some point x, € M with d(x, x) = €.
As klirrl 5, = o0, the same argument that showed x was a zero of g(VXX, X)

also shows that x, is a zero of g(V, X, X). Repeating this construction with €
€ € '

replaced by — leads to a zero x,, €M of g(Vy X, X) with d(x,,, x) = — for
m

each positive integer m. But this contradicts the fact that x is an isolated zero
of g(Vy X, X). So, indeed, lim a(s) = x.
t— oo

Case of zero y = lim «(#) is analogous. L]
T —> —os
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